Planning from Pixels in Atari with Learned Symbolic Representations

نویسندگان

چکیده

Width-based planning methods have been shown to yield state-of-the-art performance in the Atari 2600 domain using pixel input. One successful approach, RolloutIW, represents states with B-PROST boolean feature set. An augmented version of pi-IW, shows that learned features can be competitive handcrafted ones for width-based search. In this paper, we leverage variational autoencoders (VAEs) learn directly from pixels a principled manner, and without supervision. The inference model trained VAEs extracts pixels, RolloutIW plans these features. resulting combination outperforms original human professional play on drastically reduces size

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

qfd planning with cost consideration in fuzzy environment

در عصر حاضر که رقابت بین سازمان ها بسیار گسترش یافته است، مطالعه و طرحریزی سیستم های تولیدی و خدماتی به منظور بهینه سازی عملکرد آنها اجتناب ناپذیر می باشد. بخش عمده ای از رقابت پذیری سازمان ها نتیجه رضایتمندی مشتریان آنها است. میزان موفقیت سازمان های امروزی به تلاش آنها در جهت شناسایی خواسته ها و نیازهای مشتریان و ارضای این نیازها بستگی دارد. از طرفی کوتاه کردن زمان ارائه محصول/خدمات به مشتریان...

15 صفحه اول

Manipulation planning using learned symbolic state abstractions

ions Richard Dearden, Chris Burbridge aSchool of Computer Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K [email protected] [email protected]

متن کامل

Constructing Symbolic Representations for High-Level Planning

We consider the problem of constructing a symbolic description of a continuous, low-level environment for use in planning. We show that symbols that can represent the preconditions and effects of an agent’s actions are both necessary and sufficient for high-level planning. This eliminates the symbol design problem when a representation must be constructed in advance, and in principle enables an...

متن کامل

Title of dissertation : EXTRACTING SYMBOLIC REPRESENTATIONS LEARNED BY NEURAL NETWORKS

Title of dissertation: EXTRACTING SYMBOLIC REPRESENTATIONS LEARNED BY NEURAL NETWORKS Thuan Q. Huynh, Doctor of Philosophy, 2012 Dissertation directed by: Professor James A. Reggia Department of Computer Science Understanding what neural networks learn from training data is of great interest in data mining, data analysis, and critical applications, and in evaluating neural network models. Unfor...

متن کامل

Planning with Pixels in (Almost) Real Time

Recently, width-based planning methods have been shown to yield state-of-the-art results in the Atari 2600 video games. For this, the states were associated with the (RAM) memory states of the simulator. In this work, we consider the same planning problem but using the screen instead. By using the same visual inputs, the planning results can be compared with those of humans and learning methods...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2021

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v35i6.16627